暂无内容
Diffusion Model
分类:
Code
简介:Diffusion model更新一下很早之前的工作吧,后面会有更有趣的东西,但是更新时间不一定咯。DDPM:Diffusion model:扩散模型,本质上是一个生成模型。我理解的是对输入图像X进入多层Encoder,每一层形成马克可夫链,施加随机噪声(一般是高斯噪声)。最后通过同样层数的Decoder消除噪声获得X’。其实就是学习恢复数据的过程。下面对比这几个比较相似的生成模型。、其实Diffusion model跟GAN和VAE等模型的最大区别就是不是通过一个模型来生成的,而是基于马尔科夫链,通过学习噪声来生成数据。Diffusion包括前向扩散过程和反向生成过程。其中前向扩散过程指的是:像观测数据中加入噪声,直到观测数据变为高斯分布。反向生成过程指的是:从一个高斯分布中采样,随着时间T逐步的消除噪声,最终还原到清晰数据。从x0 >xt是一个逐步加噪的过程,其中噪声是已知的,最终目的是生成一张标准高斯分布图像;xt >x0是一个消噪的过程,这个噪声是需要去学习的,最终目的是还原一张图片。前向过程前向过程是增加噪声、有序到无序、熵增的过程,其满足马尔科夫过程,当前图像xt只与上一时刻xt 1有关。2024 09 14T04:40:33.png当然在前向过程中,如果我们想求得x_t,我们是否就需要一步一步的求得x_1,x_2...,x_t 1呢?这样子就跟RNN一样是一个串行的过程,计算量大且效率不高。因此经过公式推导可以知道,我们是可以从x_0直接推导到x_t的。推导过程如下:逆向过程逆向过程就是消除噪声的过程,从无序到有序,熵减的过程。也就是我们要从x_t推到x_0,但是一般反向进行推导是很困难的,所以我们先从x_t推导到x_t 1再一步一步的到x_0。根据上述最后一个公式,我们的未知量就只有z_t,即t步对应的噪声,这是需要我们进行预测的。最终就是这样一个过程。训练过程和采样过程如图所示,这里需要注意的是虽然T是固定的(200or其他),但是我们在训练的时候给定的t是随机的在0 T之间,并且t需要做位置编码,根据t从x_0求出x_t,最后将x_t和t送入模型训练,预测出噪声和真实噪声比较,计算损失,最后传播梯度。demoimport matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_s_curve
import torch
# TODO 实验数据
s_curve , _ = make_s_curve(10**4 , noise = 0.1)
s_curve = s_curve[:,[0,2] ]/10.0
print("shape of moons :",np.shape(s_curve))
data = s_curve.T
fig,ax = plt.subplots()
ax.scatter(*data ,color='red',edgecolor='white')
ax.axis('off')
plt.show()
dataset = torch.Tensor(s_curve).float() # shape of moons : (10000, 2)
# TODO 确定超参数的值
num_steps = 100 # 可以由beta alpha 分布 均值 标准差 进行估算
# 学习的超参数 动态的在(0,1)之间逐渐增大
betas = torch.linspace( 6,6,num_steps)
betas = torch.sigmoid(betas)* (0.5e 2 1e 5) + 1e 5
# 计算 alpha , alpha_prod , alpha_prod_previous , alpha_bar_sqrt 等变量的值
alphas = 1 betas
alphas_prod = torch.cumprod( alphas ,dim=0 ) # 累积连乘 https://pytorch.org/docs/stable/generated/torch.cumprod.html
alphas_prod_p = torch.cat([torch.tensor([1]).float() ,alphas_prod[: 1]],0) # p means previous
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_log = torch.log(1 alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 alphas_prod)
assert alphas_prod.shape == alphas_prod.shape == alphas_prod_p.shape \
== alphas_bar_sqrt.shape == one_minus_alphas_bar_log.shape \
== one_minus_alphas_bar_sqrt.shape
print("all the same shape:",betas.shape) #
# TODO 确定扩散过程中任意时刻的采样值
def q_x(x_0 ,t):
noise = torch.randn_like(x_0) # noise 是从正太分布中生成的随机噪声
alphas_t = alphas_bar_sqrt[t] ## 均值 \sqrt{\bar \alpha_t}
alphas_l_m_t = one_minus_alphas_bar_sqrt[t] ## 标准差 \sqrt{ 1 \bar \alpha_t}
# alphas_t = extract(alphas_bar_sqrt , t, x_0) # 得到sqrt(alphas_bar[t]) ,x_0的作用是传入shape
# alphas_l_m_t = extract(one_minus_alphas_bar_sqrt , t, x_0) # 得到sqrt(1 alphas_bart[t])
return (alphas_t * x_0 + alphas_l_m_t * noise)
# TODO 演示原始数据分布加噪100步后的效果
num_shows = 20
fig , axs = plt.subplots(2,10,figsize=(28,3))
plt.rc('text',color='blue')
# 共有10000个点,每个点包含两个坐标
# 生成100步以内每隔5步加噪声后的图像
for i in range(num_shows):
j = i // 10
k = i % 10
t = i*num_steps//num_shows # t=i*5
q_i = q_x(dataset ,torch.tensor( [t] )) # 使用刚才定义的扩散函数,生成t时刻的采样数据 x_0为dataset
axs[j,k].scatter(q_i[:,0],q_i[:,1],color='red',edgecolor='white')
axs[j,k].set_axis_off()
axs[j,k].set_title('$q(\mathbf _{'+str(i*num_steps//num_shows)+'})$')
plt.show()
# TODO 编写拟合逆扩散过程 高斯分布 的模型
# \varepsilon_\theta(x_0,t)
import torch
import torch.nn as nn
class MLPDiffusion(nn.Module):
def __init__(self,n_steps,num_units=128):
super(MLPDiffusion,self).__init__()
self.linears = nn.ModuleList([
nn.Linear(2,num_units),
nn.ReLU(),
nn.Linear(num_units,num_units),
nn.ReLU(),
nn.Linear(num_units, num_units),
nn.ReLU(),
nn.Linear(num_units, 2),]
)
self.step_embeddings = nn.ModuleList([
nn.Embedding(n_steps,num_units),
nn.Embedding(n_steps, num_units),
nn.Embedding(n_steps, num_units)
])
def forward(self,x,t):
for idx,embedding_layer in enumerate(self.step_embeddings):
t_embedding = embedding_layer(t)
x = self.linears[2*idx](x)
x += t_embedding
x = self.linears[2*idx +1](x)
x = self.linears[ 1](x)
return x
# TODO loss 使用最简单的 loss
def diffusion_loss_fn(model,x_0,alphas_bar_sqrt,one_minus_alphas_bar_sqrt,n_steps):# n_steps 用于随机生成t
'''对任意时刻t进行采样计算loss'''
batch_size = x_0.shape[0]
# 随机采样一个时刻t,为了体检训练效率,需确保t不重复
# weights = torch.ones(n_steps).expand(batch_size, 1)
# t = torch.multinomial(weights,num_samples=1,replacement=False) # [barch_size, 1]
t = torch.randint(0,n_steps,size=(batch_size//2,)) # 先生成一半
t = torch.cat([t,n_steps 1 t],dim=0) # 【batchsize,1】
t = t.unsqueeze( 1)# batchsieze
# print(t.shape)
# x0的系数
a = alphas_bar_sqrt[t]
# 生成的随机噪音eps
e = torch.randn_like(x_0)
# eps的系数
aml = one_minus_alphas_bar_sqrt[t]
# 构造模型的输入
x = x_0* a + e *aml
# 送入模型,得到t时刻的随机噪声预测值
output = model(x,t.squeeze( 1))
# 与真实噪声一起计算误差,求平均值
return (e output).square().mean()
# TODO 编写逆扩散采样函数(inference过程)
def p_sample_loop(model ,shape ,n_steps,betas ,one_minus_alphas_bar_sqrt):
'''从x[T]恢复x[T 1],x[T 2],……,x[0]'''
cur_x = torch.randn(shape)
x_seq = [cur_x]
for i in reversed(range(n_steps)):
cur_x = p_sample(model,cur_x, i ,betas,one_minus_alphas_bar_sqrt)
x_seq.append(cur_x)
return x_seq
def p_sample(model,x,t,betas,one_minus_alphas_bar_sqrt):
'''从x[T]采样时刻t的重构值'''
t = torch.tensor(t)
coeff = betas[t] / one_minus_alphas_bar_sqrt[t]
eps_theta = model(x,t)
mean = (1/(1 betas[t]).sqrt())*(x (coeff*eps_theta)) # 之前写错了:mean = (1/(1 betas[t].sqrt()) * (x (coeff * eps_theta)))
z = torch.randn_like(x)
sigma_t = betas[t].sqrt()
sample = mean + sigma_t * z
return (sample)
# TODO 模型的训练
seed = 1234
class EMA():
'''构建一个参数平滑器'''
def __init__(self,mu = 0.01):
self.mu =mu
self.shadow =
def register(self,name,val):
self.shadow[name] = val.clone()
def __call__(self, name, x): # call函数?
assert name in self.shadow
new_average = self.mu * x +(1.0 self.mu) * self.shadow[name]
self.shadow[name] = new_average.clone()
return new_average
print('Training model ……')
'''
'''
batch_size = 128
dataloader = torch.utils.data.DataLoader(dataset,batch_size=batch_size,shuffle = True)
num_epoch = 4000
plt.rc('text',color='blue')
model = MLPDiffusion(num_steps) # 输出维度是2 输入是x 和 step
optimizer = torch.optim.Adam(model.parameters(),lr = 1e 3)
for t in range(num_epoch):
for idx,batch_x in enumerate(dataloader):
loss = diffusion_loss_fn(model,batch_x,alphas_bar_sqrt,one_minus_alphas_bar_sqrt,num_steps)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(),1.) #
optimizer.step()
# for name ,param in model.named_parameters():
# if params.requires_grad:
# param.data = ems(name,param.data)
# print loss
if (t% 100 == 0):
print(loss)
x_seq = p_sample_loop(model,dataset.shape,num_steps,betas,one_minus_alphas_bar_sqrt)# 共有100个元素
fig ,axs = plt.subplots(1,10,figsize=(28,3))
for i in range(1,11):
cur_x = x_seq[i*10].detach()
axs[i 1].scatter(cur_x[:,0],cur_x[:,1],color='red',edgecolor='white');
axs[i 1].set_axis_off()
axs[i 1].set_title('$q(\mathbf _{'+str(i*10)+'})$')
结果数据集使用sklearn.datasets中的make_s_curve生成三维S曲线数据集,10k个三维点,我直接截取了第0维和第3维数据投影到二维平面呈S型。训练时使用这个二维投影点组成的分布图形进行训练,batch_size=128,epoch=4000,每一轮将点集打乱。也就是每一个iteration从10k点中抽取128直至抽完算一个epoch,也就是学习这些点集的分布。原始分布:加噪过程:训练过程:
创作:Anson Seabra
评分:
标签:
That's Us
简介:哈哈这是网易云随机推荐给我的一首歌,当Anson Seabra的歌声传入我的耳朵中时,我知道这就是我想要的,这就是“一听钟情”吧?这首歌能让你想起青春里的遗憾嘛?Almost thought we could've been something,Almost thought we could havetried, butIt didn't happen so I need you to get out my life。差点我就觉得我们会有结果了。即使如此,明天我还是想见你。
2024年11月2日
Saturday.
焦点
近期文章
创作:Anson Seabra
评分:
分类:
音乐
标签:
简介:哈哈这是网易云随机推荐给我的一首歌,当Anson Seabra的歌声传入我的耳朵中时,我知道这就是我想要的,这就是“一听钟情”吧?这首歌能让你想起青春里的遗憾嘛?Almost thought we could've been something,Almost thought we could havetried, butIt didn't happen so I need you to get out my life。差点我就觉得我们会有结果了。即使如此,明天我还是想见你。
wy的leetcode刷题记录_Day66
简介:wy的leetcode刷题记录_Day66声明本文章的所有题目信息都来源于leetcode如有侵权请联系我删掉!时间:2023 4 10前言@TOC1019. 链表中的下一个更大节点今天的每日一题是:1019. 链表中的下一个更大节点题目介绍给定一个长度为 n 的链表 head对于列表中的每个节点,查找下一个 更大节点 的值。也就是说,对于每个节点,找到它旁边的第一个节点的值,这个节点的值 严格大于 它的值。返回一个整数数组 answer ,其中 answer[i] 是第 i 个节点( 从1开始 )的下一个更大的节点的值。如果第 i 个节点没有下一个更大的节点,设置 answer[i] = 0 。示例 1:输入:head = [2,1,5] 输出:[5,5,0] 示例 2:输入:head = [2,7,4,3,5] 输出:[7,0,5,5,0]思路一道简单的模拟题,分析题意下来就是,遍历整个节点,对于当前节点我们向后寻找第一个大于该节点的节点值,并将值放入一个vector,如果没有则放入0。代码/**
* Definition for singly linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr)
* ListNode(int x) : val(x), next(nullptr)
* ListNode(int x, ListNode *next) : val(x), next(next)
* };
*/
class Solution {
public:
vector<int> nextLargerNodes(ListNode* head) {
ListNode* curr=head;
ListNode*next=head >next;
vector<int> ans;
while(curr >next)
{
while(next)
{
if(next >val>curr >val)
{
ans.push_back(next >val);
break;
}
else
{
next=next >next;
}
}
if(next==nullptr)
{
ans.push_back(0);
}
curr=curr >next;
next=curr >next;
}
ans.push_back(0);
return ans;
}
};收获简单的模拟题OI WIKIOI WIKI从今天起,开始较为系统的学习算法的一些基础,不再盲目刷题了。
wy的leetcode刷题记录_Day64
简介:wy的leetcode刷题记录_Day64声明本文章的所有题目信息都来源于leetcode如有侵权请联系我删掉!时间:2023 3 29前言@TOC1641. 统计字典序元音字符串的数目今天的每日一题是:1641. 统计字典序元音字符串的数目题目介绍给你一个整数 n,请返回长度为 n 、仅由元音 (a, e, i, o, u) 组成且按 字典序排列 的字符串数量。字符串 s 按 字典序排列 需要满足:对于所有有效的 i,s[i] 在字母表中的位置总是与 s[i+1] 相同或在 s[i+1] 之前。示例 1:输入:n = 1 输出:5 解释:仅由元音组成的 5 个字典序字符串为 ["a","e","i","o","u"] 示例 2:输入:n = 2 输出:15 解释:仅由元音组成的 15 个字典序字符串为["aa","ae","ai","ao","au","ee","ei","eo","eu","ii","io","iu","oo","ou","uu"]。注意,"ea" 不是符合题意的字符串,因为 'e' 在字母表中的位置比 'a' 靠后 示例 3: 输入:n = 33 输出:66045思路归纳总结法:列出表格看图:数学分析法:我们想象有五个盒子,共有n个小球。从左往右盒子编号依次为a、e、i、o、u,我们必须从左往右再拿n个小球出来,每当我们拿出一个小球时,将盒子上的编号填入字符串即可。这样子就转换成这n个小球该如何放入这5个盒子并且盒子可以为空的排列组合问题。我们假设有n+5个球,多出的5个球分别放入a、e、i、o、u,这样剩下n个就可以随便放入了。就是在这n个球中插入四个隔板分成五类,四个隔板在n 1个空中随机分布C(4 n 1)。或者你将n个球盒子不为空和空1个一直到空5个的情况加起来也可以。代码class Solution {
public:
int countVowelStrings(int n) {
vector<vector<int>> dp(n+1,vector<int>(5));
// int dp[n][5];
if(n==1)
return 5;
for(int i=0;i<5;i++)
{
dp[0][i]=1;
}
for(int i=0;i<n+1;i++)
{
dp[i][0]=1;
}
for(int i=1;i<n+1;i++)
{
for(int j=1;j<5;j++)
{
dp[i][j] = dp[i][j 1] + dp[i 1][j];
}
}
return dp[n][4];
}
};class Solution {
public:
int countVowelStrings(int n) {
return (n + 4) * (n + 3) * (n + 2) * (n + 1) / 24;
}
};
收获观察题,最后总结出数学规律。